In situ Current Voltage Measurements for Optimization of a Novel Fullerene Acceptor in Bulk Heterojunction Photovoltaics

نویسندگان

  • Christopher G. Shuttle
  • Neil D. Treat
  • Jian Fan
  • Alessandro Varotto
  • Craig J. Hawker
  • Fred Wudl
  • Michael L. Chabinyc
چکیده

The evaluation of the power conversion efficiency (PCE) of new materials for organic bulk heterojunction (BHJ) photovoltaics is difficult due to the large number of processing parameters possible. An efficient procedure to determine the optimum conditions for thermal treatment of polymer-based bulk heterojunction photovoltaic devices using in situ currentvoltage measurements is presented. The performance of a new fullerene derivative, 1,9-dihydro-64,65-dihexyloxy-1,9-(methano[1,2] benzomethano)fullerene[60], in BHJ photovolatics with poly(3-hexylthiophene) (P3HT) was evaluated using this methodology. The device characteristics of BHJs obtained from the in situ method were found to be in good agreement with those from BHJs annealed using a conventional process. This fullerene has similar performance to 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methano fullerene in BHJs with P3HT after thermal annealing. For devices with thickness of 70 nm, the short circuit current was 6.24 mA/cm with a fill factor of 0.53 and open circuit voltage of 0.65 V. The changes in the current-voltage measurements during thermal annealing suggest that the ordering process in P3HT dominates the improvement in power conversion efficiency. VC 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 174–179, 2012

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics.

A series of acceptor-donor-acceptor molecules containing terminal BODIPY moieties conjugated through the meso position were synthesized. Deep LUMO energy levels and good visible absorption led to their use as acceptors in bulk heterojunction solar cells. Inverted devices were fabricated, reaching efficiencies as high as 1.51%.

متن کامل

A non-fullerene electron acceptor based on fluorene and diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an impressive open-circuit voltage.

A novel solution-processable non-fullerene electron acceptor 6,6'-(5,5'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (DPP1) based on fluorene and diketopyrrolopyrrole conjugated moieties was designed, synthesized and fully characterized. DPP1 exhibited excellent solubility and high thermal stability ...

متن کامل

Bulk heterojunction organic solar cells fabricated by oblique angle deposition.

Bulk heterojunction organic solar cells based on small molecules are often fabricated by the co-deposition of donor and accepter materials on substrates placed horizontally. An intimate blend of donor and acceptor molecules is the common product in as-prepared samples. Using metal phthalocyanine as the donor and fullerene as the acceptor, we tilt the substrate to deposit the active layer. Both ...

متن کامل

Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear ...

متن کامل

Project title : Advanced electron transport materials for application in organic photovoltaics ( OPV )

This project is focused on discovering efficient, less expensive and tunable organicbased electron transport materials for application in organic photovoltaics (OPV) in an effort to replace more commonly used fullerene-based materials. The emphasis during the first six months of this project was more on the synthesis of new materials, with less emphasis on device fabrication that will ramp up d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011